ThermoFisher SCIENTIFIC

The world leader in serving science

ARL ADVANT'X Intellipower™ Series

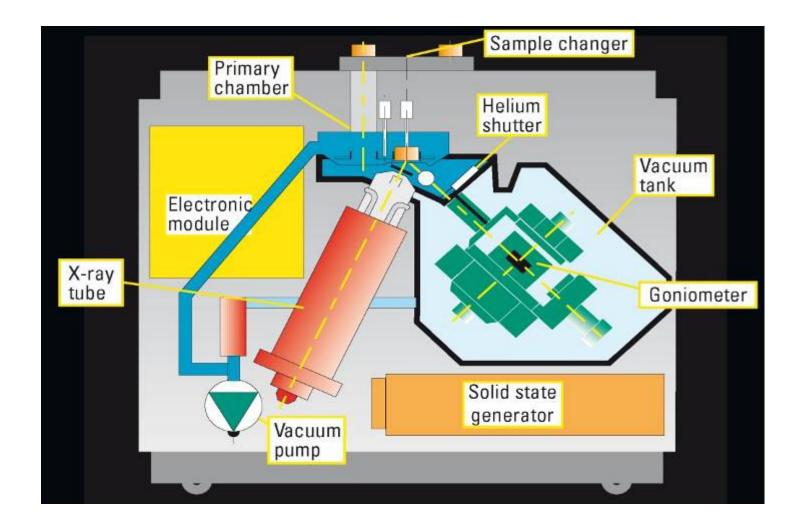
Analysis of Polymers

Advances in X-ray Fluorescence

ARL ADVANT'X Intellipower Series

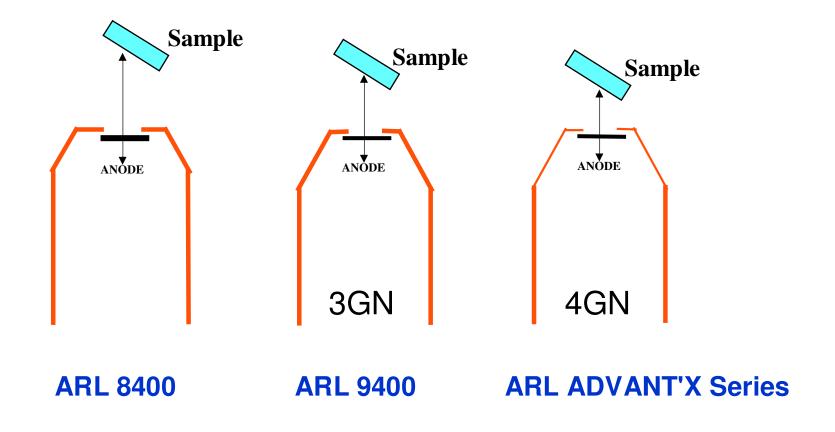
ARL ADVANT'X Intellipower Series:

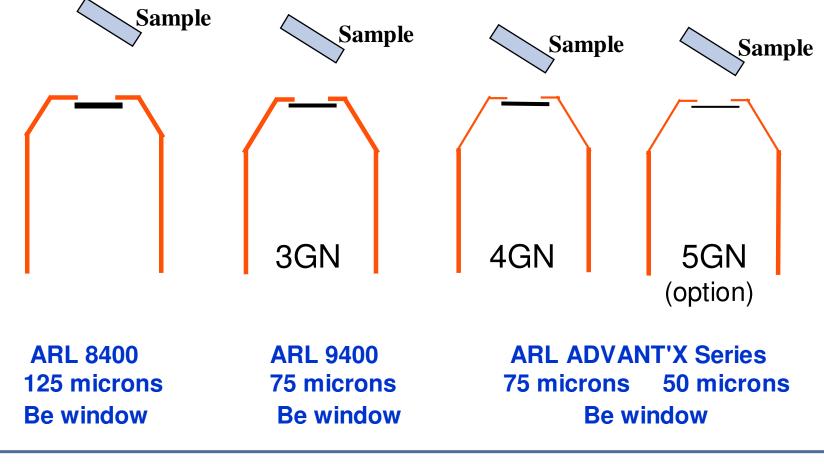
- A new generation of sequential XRF instruments for the 21st century
- Four spectrometers with a choice of power for various levels of performance and speed of analysis:
 - ARL ADVANT'X Intellipower 1200/2500
 - 1200W or 2500W
 - no external water chiller required
 - ARL ADVANT'X Intellipower 3600/4200
 - 3.6 kW high performance
 - 4.2 kW top performance



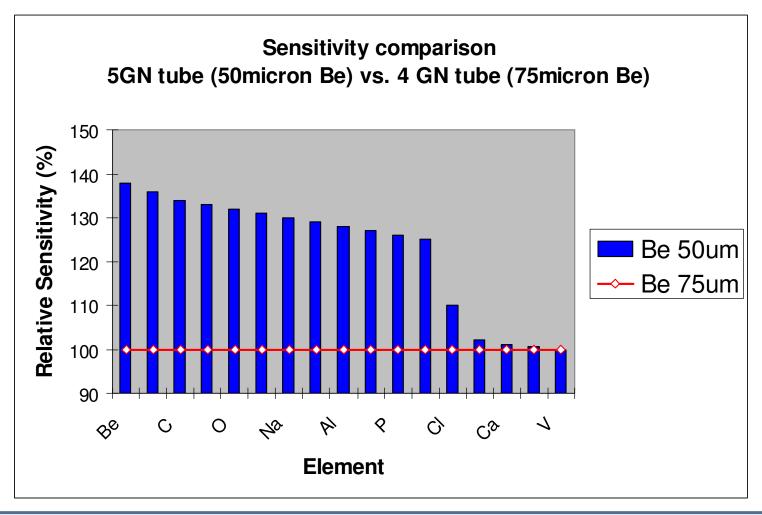
ARL ADVANT'X Family : Features & Benefits

- Built around unique ARL universal goniometer updated for faster operation
- New X-ray tubes (4GN, 5GN) bring higher sensitivity
- Modular approach for flexibility in price / performance
- Multiple sample loading capabilities
- Unique features for highest performance on ultra-light elements analysis


ARL ADVANT'X Intellipower Series: Side View


X-ray tube evolution : closer coupling for higher sensitivities

X-ray tube evolution : thinner windows


 Thinner window for enhanced excitation of ultra-light elements (Be to Cl)

5GN X-ray tube with 50µm Be window (optional)

50μm Be window brings enhanced sensitivity compared to 75μm Be window

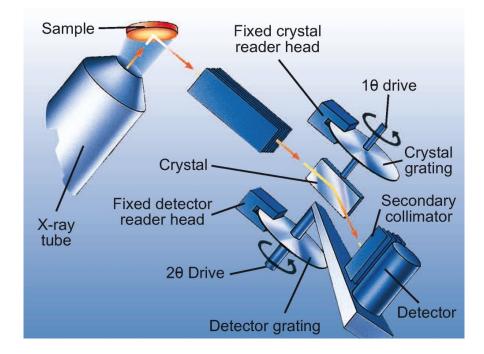
View of the latest Moiré fringe gearless goniometer, version F45

ARL ADVANT'X Intellipower Series

... 10 Year Warranty on the angular positioning of the XRF goniometer

eXtra Performance in sequential XRF

- 5th Generation Goniometer
- Quantitative analysis of any element from Oxygen to Uranium (in basic configuration)
- Elements from Beryllium to Nitrogen when specific multilayer crystals are fitted
- Full capability for analysis of non-routine samples
 - Semi-quantitative analysis (QuantAS)
 - Stardardless analysis (UniQuant 5)



- Moiré Fringe positioning
 - Digital precision < +/- 0.0002°
- Slewing speed up to 4800 deg/min
- Accuracy +/- 0.01 degree on LiF crystals
- Up to 4 collimators
- Up to 9 crystals
- Two detectors with angular range of 0° to 155°
- Fifth generation system with 25 years experience and 2500 gearless goniometers installed worldwide
- Automatic alignment of crystal and detector
 - No human errors & no radiation hazard
- Automatic self quality control

Moiré Fringe Positioning

- Crystal and detector systems are each linked to a circular glass diffraction grating
- Reader heads contain the smaller angled grating and the optical detector
- Crystal grating is rotated by a θ drive, while the detectors are moved at angle 2θ in order to satisfy Bragg's law : n λ = 2d sin θ
 - n = order of radiation
 - λ = wavelength of radiation
 - 2d = interplanar spacing of crystal
 - θ = angle of incidence on the crystal

Goniometer Principle of Operation

Choice of Collimators, Crystals & Detectors

FEATURE	Sensitivity	Resolution	Elements												
K Spectra L Spectra			Ве	В	С	Ν	0 -	F -Na	Mg	-	T	1	К	CaTiFe SnYb	CoZnSn HfU
COLLIMAT.															
X-Coarse 2.6°	V.High	Low													
Coarse 0.6°	High	Fair													
Medium 0.25°	Good	Good													
Fine 0.15°	Low	High													
CRYSTAL															
AXBeB	High	Low	Be												
AX20	Good	Low		В											
AX16	High	Low			С										
AX09	Good	Low				Ν									
AX06	High	Low					0								
AX03	Good	Good					0								
TIAP	Good	Good					0								
ADP	Low	High							Mg						
PET	Good	Fair								A					
InSb	High	High									Si				
Ge111	Good	High										Ρ			
LiF 200	Good	Good											K		
LiF 220	Fair	High												Ti	
LiF420	Low	V.High													
DETECTOR															
FPC															Zn
Scintillation															

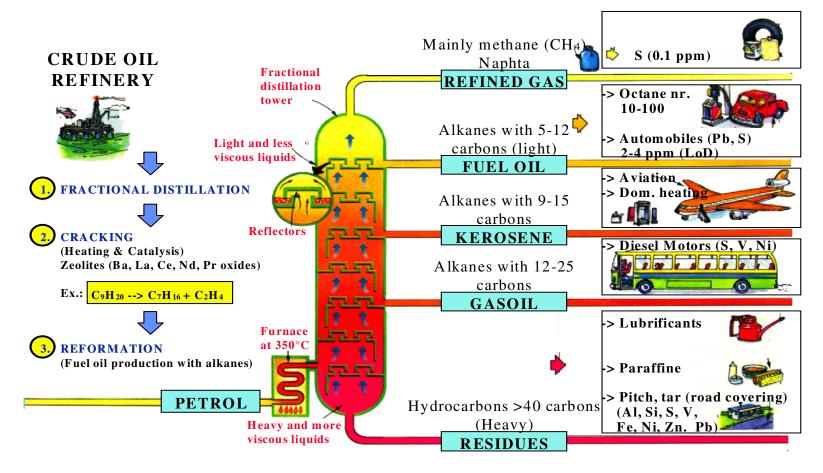
FPC = flow proportional counter

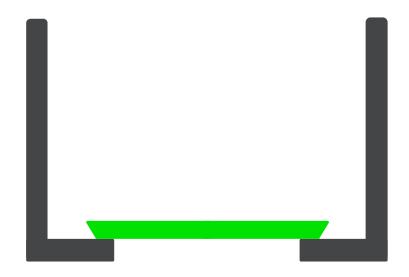
ARL ADVANT'X Intellipower Series

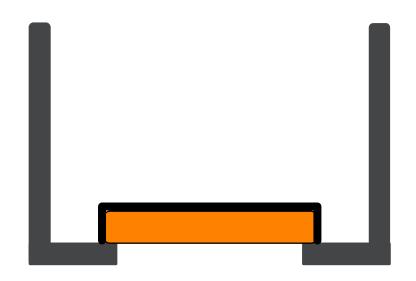
Comprehensive sample loading systems

Single position 4.4

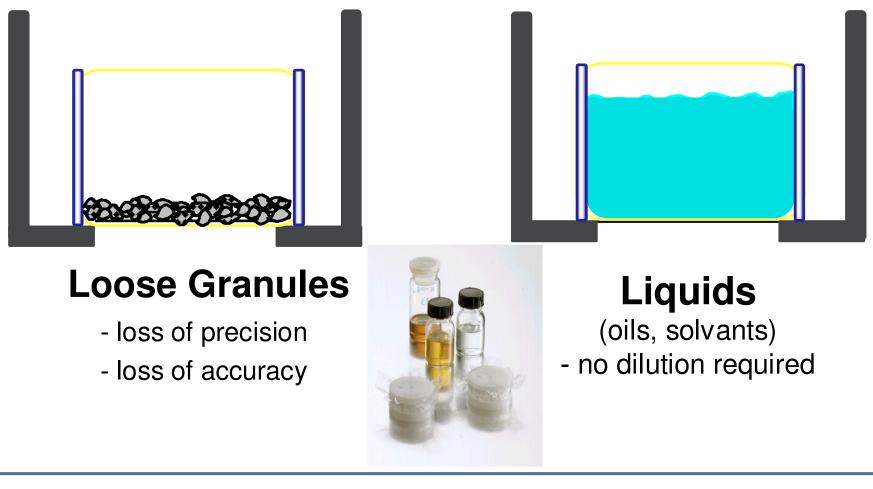
12 positions




ARL ADVANT'X : Applications

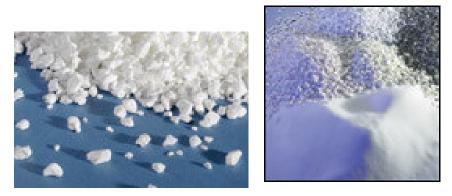

PETROCHEMICALS: Process, Products & Analysis

Sample preparation: Conventional Solid Samples


Fused Glass Bead or Polymer disc

(prepared by hot pressing)

Bulk Sample (Metal, Glass or Pressed Powder)


Other Sample Types

Analysis of traces in polymers

- Catalysts for polymerization
 - Al, Ti and Zn
- Charges and additives
 - Plasticizers
 - Lubricants
 - Stabilizing agents
 - Neutralizers
 - Anti-oxidants
 - Pigments
 - Mg, Si, P, S, Cl and Ca

Analysis of traces in polymers

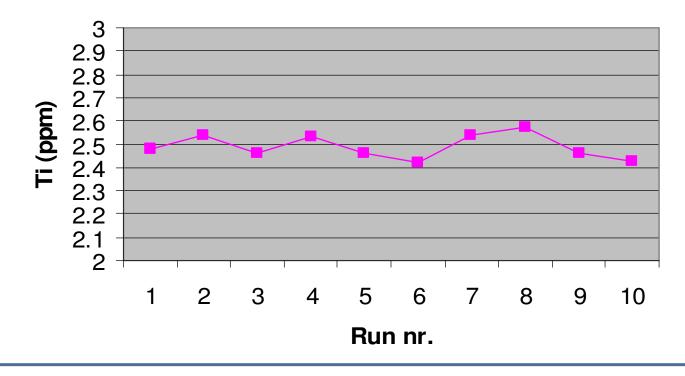
ELEMENT	4200W (3 SIGMA) [PPM]	3600W (3 SIGMA) [PPM]	2500W (3 SIGMA) [PPM]	1200W (3 SIGMA) [PPM]
Mg	0.86	0.93	1.11	1.61
AI	0.23	0.25	0.30	0.43
Р	0.16	0.17	0.21	0.30
CI	0.30	0.32	0.39	0.56
Ca	0.14	0.15	0.18	0.26
Ti	0.10	0.11	0.13	0.19
Cr	0.11	0.12	0.14	0.21
Fe	0.07	0.08	0.09	0.13

TYPICAL LOD ON ARL ADVANT'X INTELLIPOWER SERIES

 Limits of detection for various elements in polymers (100s counting time)

Demands on Ti analysis in polymers

- Ti used as catalyst
- Undesirable rest in the polymer
- Monitoring required
- \pm 0.1 ppm on a range from 0.5 to 5 ppm



Repeatability for Ti analysis in polymers

- 10 runs 60 seconds analysis time
- Sample comes out of spectrometer after each run
- Standard deviation : 0.052 ppm

Repeatability for trace analysis in polymers

RUN	AI [PPM]	Ca [PPM]	Fe [PPM]	Mg [PPM]	Ti [PPM]	P [PPM]	Ce [PPM]
1	71.3	104.4	11.4	60.1	2.1	15.6	24.2
2	72.0	104.2	11.6	59.9	2.0	15.6	24.0
3	71.6	104.1	11.6	60.8	2.0	15.6	23.0
4	71.5	105.1	11.4	60.6	2.1	15.7	23.5
5	72.5	104.9	11.6	61.3	2.0	15.6	23.2
6	73.5	105.2	11.4	61.5	2.0	15.9	23.7
7	72.7	105.6	11.6	61.7	2.2	16.1	23.6
8	73.4	105.8	11.6	60.5	2.1	16.2	22.4
Avg.	72.3	104.9	11.5	60.8	2.0	15.8	23.5
SD	1.4	1.0	0.1	0.2 8	0.1	0.4	1.3

- 8 runs on the same polymer disc
- 20 seconds analysis time per element
- Power: 4200W

References in polymers analysis

Masterbatches

- Schulman Plastics (Belgium)
- Clariant (Italy)

Tapes and adhesives

- MacTac Europe (Belgium)
- Nitto Europe (Belgium)

Polymers films

- Toray Plastics (France)
- Huntsman Chemicals (USA)
- Mitsubishi Chemicals (ex-Hoechst Diafoil) USA

Tyres and rubber

Pirelli (Italy)

References in polymers analysis

Polyolefins

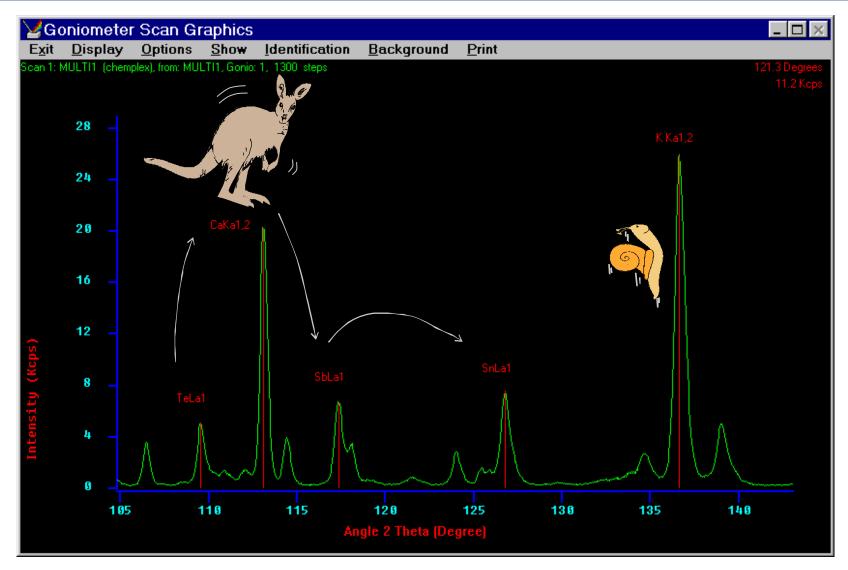
- Montell (Italy)
- Borealis (Finland)
- Tecnip Qatar (QR)
- SABIC Ibn Zahr (Saudi Arabia)
- Saudi Polyolefins (Saudi Arabia)
- The Polyolefin Company (Singapore)
- Technimont (UAE)
- PolyOne (USA)

Monomers, Polymers, Resins

- Arkema (ex-Atofina Chemicals) (USA)
- Lubrizol (USA)
- BP Amoco Chemicals (USA)
- G.E. Plastics (USA)
- etc..

State of the art in WDXRF: Standard-less analysis

WDXRF has the distinction of being unique and powerful technique by virtue of


Standard-less analysis

Made possible by advancement of mathematical formulation of XRF through Fundamental Parameters and thorough understanding of the physics behind XRF.

Standard-less XRF analysis Two methods used: Peak hopping vs. Scanning

Versatility of standard-less program UniQuant v.5

Variety of samples types and nature

- Solids such as polymers, alloys and pressed powders
- Liquids with variable mass (catch weight)
- Fused beads with varying dilution (catch weights)
- Small amounts, as little a 10 mg powder.
- Odd shapes, small components.
- Monolayer on substrate. Composition and thickness
- Multilayer on substrate. Thickness of layers.

Limits of detection in oils

Element	•	LoD [ppm]	LoD [ppm]	LoD [ppm]	
	Detector	Intellipower	Inte llipo we r	Intellipower	
		3600 W	2500 W	1200 W	
Mg	AX06/FPC	2.2	2.65	3.74	
Al	PET/FPC	0.67	0.81	1.14	
Si	PET/FPC	0.38	0.46	0.65	
S	GE111/FPC	0.25	0.30	0.43	
Ca	LIF200/FPC	0.17	0.21	0.29	
Cr	LIF200/FPC	0.14	0.17	0.24	
Mn	LIF200/FPC	0.14	0.17	0.24	
Fe	LIF200/FPC	0.15	0.18	0.26	
Cu	LIF200/SC	0.12	0.14	0.2	
Zn	LIF200/SC	0.11	0.13	0.19	
Sn	LIF200/FPC	0.57	0.69	0.97	
Pb	LIF200/SC	0.14	0.17	0.24	

3 sigma – 100s counting time – 6 micron PP film

ThermoFisher SCIENTIFIC

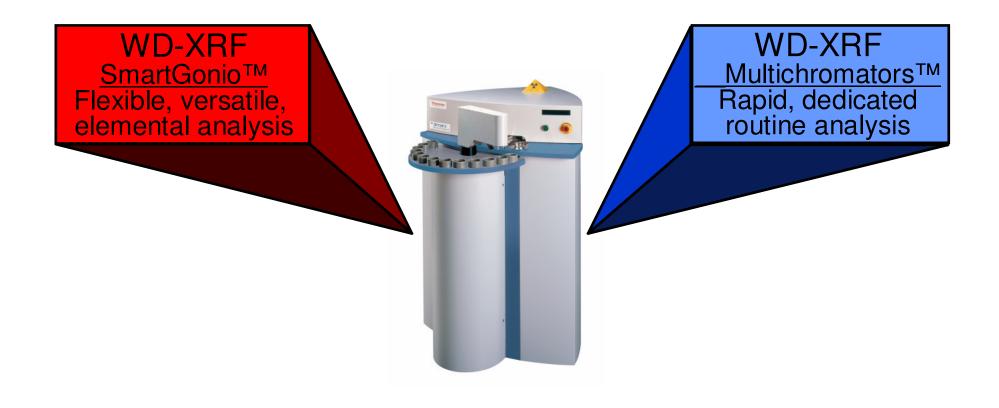
The world leader in serving science

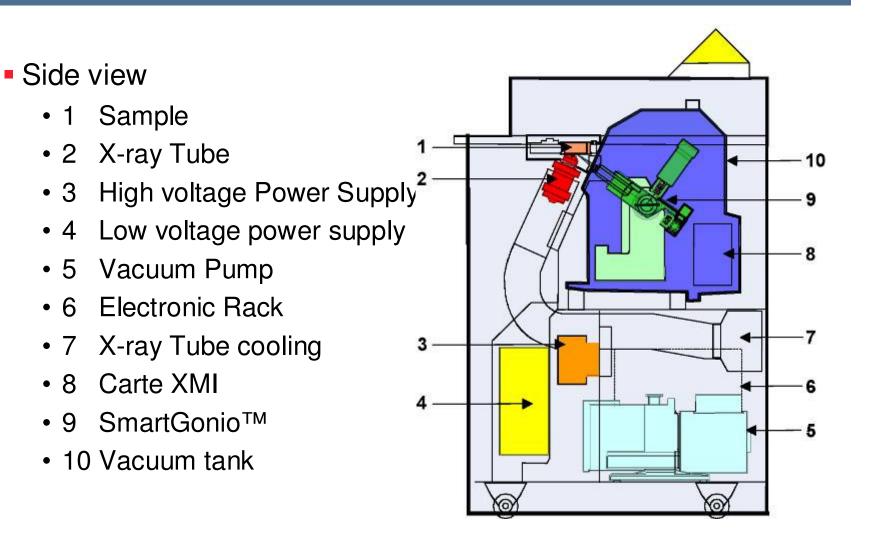
ARL OPTIM'X

High performance at affordable price

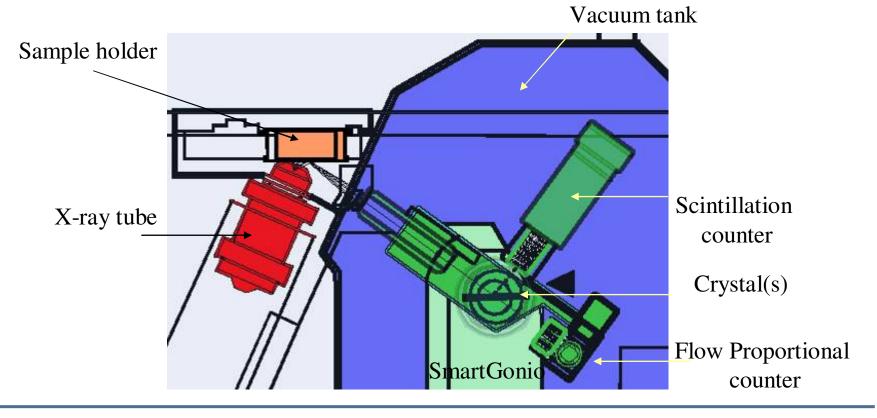
Unique WDXRF system

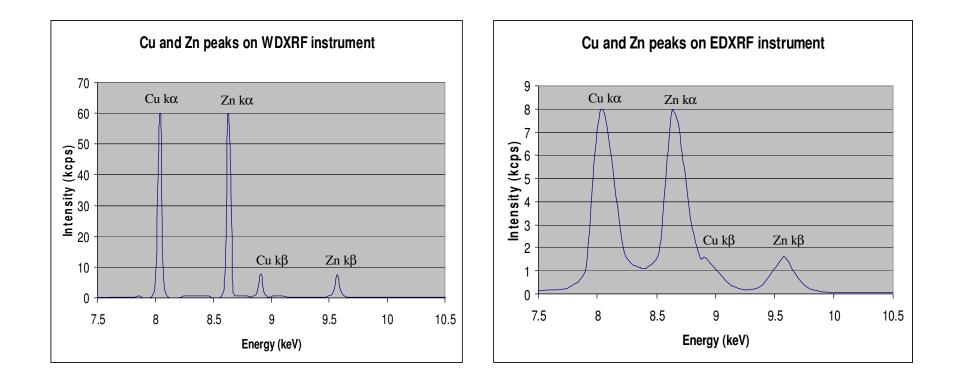
ARL OPTIM'X


Optimized configuration for optimum analytical results

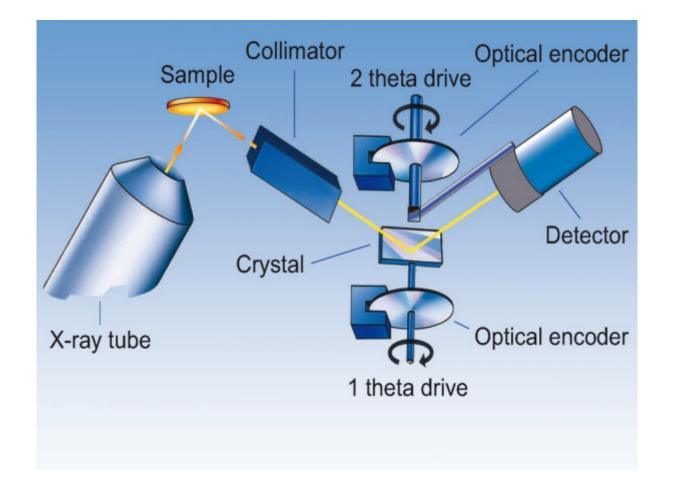

ARL OPTIM'X: Unique WDXRF product

ARL OPTIM'X

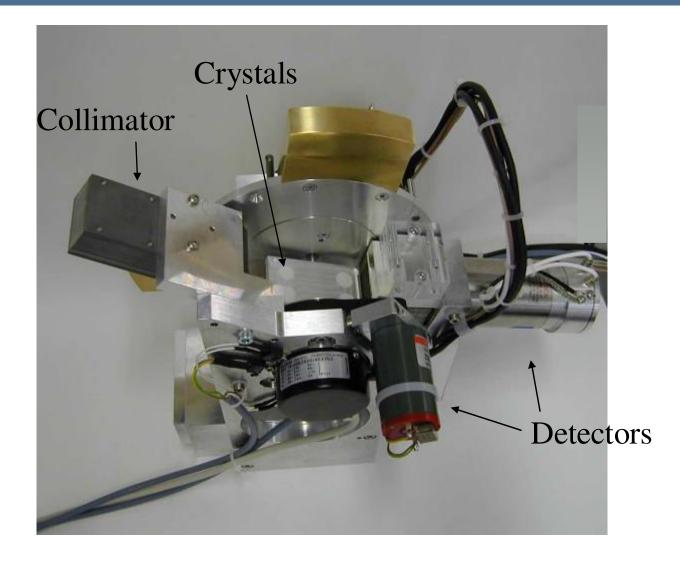



Close coupling

- Mini X-ray tube (50W air cooled)
- Close coupling of optics for optimized sensitivity equivalent to 200 W


Superior Spectral Resolution

- 10 times better resolution compared to EDX
- 8 to 10 times higher count rates


ARL OPTIM'X Exclusive SmartGonio[™]

View of the Moiré fringe SmartGonio[™]

ARL OPTIM'X Exclusive SmartGonio[™]

ARL OPTIM'X Exclusive SmartGonio[™]

Up to 3 crystals fitted !!

Gives access to all elements from F to U (when 2 detectors fitted)

Integrated Analytical Assistant

😝 Analytical Assistant	
H Matrix Details Major [> 10 %] More Major [> 10 %] More Minor [0.5 - 10 %] More Traces [< 0.5 %]	Ne Ar Xr
Actions Actions Dilution Image: Select the concentrations and the related element menu Diluent Weight [g] OK Cancel	

Analytical information on all analyzed elements Ease of use and help through Analytical Assistant

ARL Optim'X: Unique WDXRF Spectrometer

- Attractive price/performance ratio
- No water cooling required
- Low power consumption
- Very low detector gas consumption
- Most modern and intelligent electronics platform
- Minimized operating costs
 - no external water supply necessary (neither city water nor external water cooler circuit required)
- Modem connection for remote diagnostics

Typical applications

Oils, gasoline and other petrochemical products

Elemental analysis of oils and gasoline

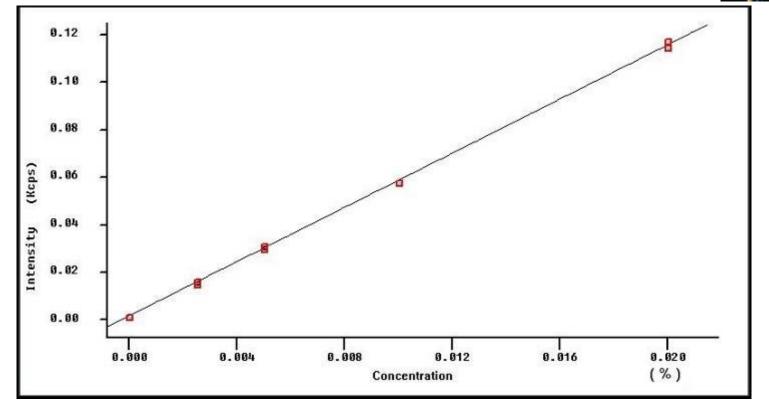
- ISO 14596 or prEN ISO 20884 (S)
- ASTM D2622 (S)
- ISO 15597 (CI and Br)
- ISO 14597 (Ni and V)
- ASTM D5059 (Pb)
- DIN 51577 (CI)
- DIN 51391 (Ca, Zn)
- DIN 51431 (Mg)
- DIN 51363 (P)

•

Elemental Analysis of oils and gasoline

SULPHUR IN GASOLINE AND DIESEL

- Environmental regulations worldwide are getting tighter
- Diesel fuel with $S \le 10$ ppm is already produced in some European countries
- By 2006 the limit for diesel has been set at 15ppm in USA
- In order to be sure to have less than 10ppm S in the market, the producer must produce at 4ppm S maximum.
- The XRF instrument must have a maximum LoD of 1.5 ppm to do the job


ARL Optim'X: S in oil and gasoline

Limit of detection:

1.4 ppm in 100s 1.0 ppm in 200s

ARL Optim'X: S in oil and gasoline

Short term repeatability (120 s)

Two samples - new cell at each run

Sample	25ppm	100ppm
Run 1	25.4	100.6
Run 2	25.7	100.7
Run 3	26.4	101.8
Run 4	26	102.3
Run 5	25	98.4
Run 6	25.9	100.5
Run 7	26.7	101.5
Average	25.9	100.8
Std. Dev.	0.58	1.27

ARL Optim'X: Limits of detection

	Fixed channel
Element	LOD [ppm] 120s
Mg	8
Al	3.1
Si	3.2
Р	1.5
S	1.2
Ca	1.7
Fe	0.8
Pb	1

Oil matrix - Fixed channels - 120 s counting time

ARL Optim'X: Limits of detection

		Smart
		Gonio
Element	SmartGonio	LOD [ppm]
	configuration	120s
Al	PET/FPC	4.2
Si	PET/FPC	4
Р	PET/FPC	2
S	PET/FPC	1.7
K	LIF200/FPC	1.4
Ca	LIF200/FPC	1.5
V	LIF200/FPC	1
Cr	LIF200/FPC	1
Mn	LIF200/FPC	1
Fe	LIF200/FPC	1.1
Ni	LIF200/SC	0.6
Cu	LIF200/SC	0.8
Zn	LIF200/SC	0.6
Pb	LIF200/SC	1.7

Oil matrix SmartGonioTM 120 s counting time

FPC :Flow proportional counterSC :Scintillation counter

Typical applications

 Polymers and masterbatch products

ARL Optim'X: Application in Polymers

Limits of detection in Polymers

Elem.	Line	Crystal	Detector	Collima.	Time	Kv/mA	LOD
F	Ka	AX06	FPC	0.29	120	40/1.25	500 ppm
S	Ka	PET	FPC	0.29	120	40/1.25	4.1 ppm
Р	Ka	PET	FPC	0.29	120	40/1.25	4.3 ppm
K	Ka	LIF200	FPC	0.29	120	40/1.25	1.5 ppm
Ti	Ka	LIF200	FPC	0.29	120	40/1.25	1.2 ppm
Cr	Ka	LIF200	FPC	0.29	120	40/1.25	1.1 ppm
Br	Ka	LIF200	FPC	0.29	120	40/1.25	0.9 ppm

ARL Optim'X: Application in Polymers

Repeatability in Polymers

	Run	F	Si	Р	S	K	Ti	Cr	Br
sample 4	1	0.0098	0.0046	0.0023	0.0463	0.0174	0.00014	0.00002	0.0291
sample 4	2	0.0032	0.0045	0.0022	0.0470	0.0173	0.00010	0.00005	0.0290
sample 4	3	0.0211	0.0047	0.0020	0.0463	0.0175	0.00003	-0.00003	0.0289
sample 4	4	0.0239	0.0047	0.0023	0.0467	0.0172	0.00018	0.00000	0.0291
sample 4	5	-0.0147	0.0047	0.0022	0.0471	0.0177	0.00004	-0.00003	0.0290
sample 4	б	0.0343	0.0047	0.0022	0.0477	0.0172	0.00008	-0.00007	0.0290
sample 4	7	0.0305	0.0045	0.0020	0.0469	0.0173	0.00010	-0.00003	0.0290
sample 4	8	-0.0015	0.0046	0.0023	0.0467	0.0172	0.00001	0.00000	0.0291
sample 4	9	0.0239	0.0048	0.0027	0.0468	0.0172	0.00011	0.00008	0.0290
sample 4	10	0.0220	0.0046	0.0028	0.0472	0.0175	0.00011	0.00006	0.0291
sample 4	11	0.0042	0.0046	0.0024	0.0473	0.0174	0.00008	-0.00001	0.0290
	Ave.	0.0143	0.0046	0.0023	0.0469	0.0174	0.00009	0.00000	0.0290
	SD	0.0151	0.00010	0.00023	0.00042	0.00015	0.00005	0.00005	0.00005

All results given in %

